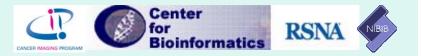
NCI caBIG biomedical informatics

cancer Biomedical

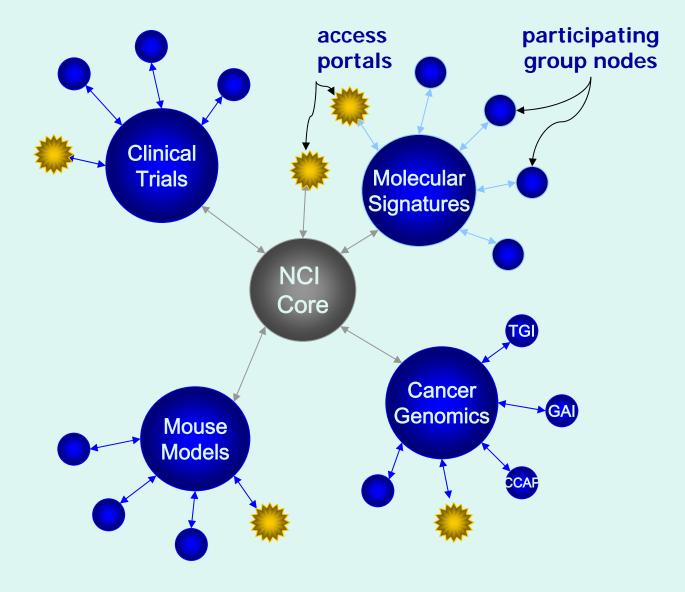
Informatics Grid

caBIG

 Goal: A virtual web of interconnected data, individuals, and organizations redefines how research is conducted, care is provided, and patients/participants interact with the biomedical research enterprise


caBIG cancer Biomedical Informatics Grid

- Common, widely distributed infrastructure permits cancer research community to focus on innovation
- Shared vocabulary, data elements, data models facilitate information exchange
- Collection of interoperable applications developed to common standard
- Cancer data is available for mining and integration


CaBIG cancer Biomedical Informatics Grid

caBIG consortium

- NCI Cancer Centers
- SPOREs
- Intramural Program
- Specific Initiatives
 - COOP Groups
 - CIP
 - MMHCC
- Other biomedical research groups and consortia

building common architecture, common tools, and common standards

caBIG principles

- Open source
- Open access
- Open development
- Federated

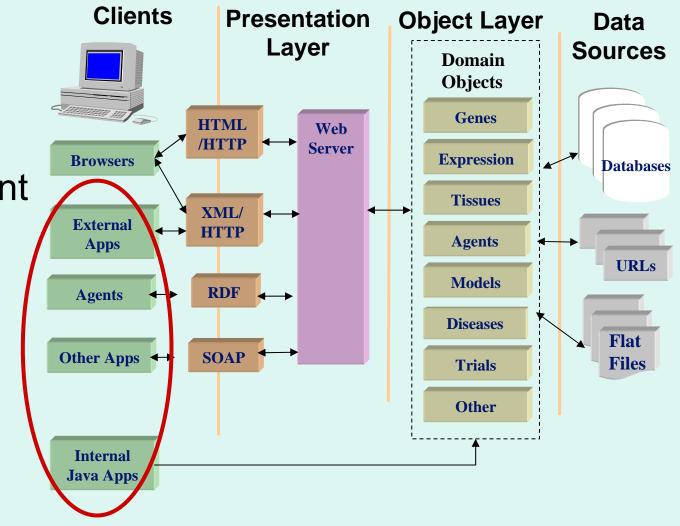
caCORE – common ontologic representation environment

- Information integration
- Cross-discipline reasoning

biomedical objects

common data elements

controlled vocabulary


Center

Bioinformatics

for

...a sharing architecture

- open source
- open development
- open access
- federated

NCICB applications:

- clincial trials support C3D
- molecular pathology caArray
- <u>cancer images calmage</u>
- pre-clinical models caModelsDb
- laboratory support caLIMS

caBIG action plan

Establish pilot network of ~10 Cancer Center

cancer Biomedical

Informatics Grid

- Groups agreeing to caBIG principles
- Mixture of capabilities

caBlG

- Mixture of contributions
- Expanding collection of participants
- Establish consortium development process
 - Collecting and sharing expertise
 - Identifying and prioritizing community needs
 - Expanding development efforts

- **CIP effort:** Dancing with the elephant
 - I2 "Integration & Implementation" Initiative

Today's Imaging Cancer Research & Practice

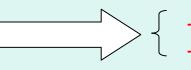
Undeveloped Potential

Detection

- Tedious
- Inefficient
- Observer-dependent
- Not reproducible

Diagnosis

- Inaccurate
- Invasive confirmation required


<u>Response to therapy</u>

- RECIST criteria inadequate
- Delayed decisions on individual care

Development of new therapeutics

- Drug studies lack imaging surrogates
- Trials costly; too many patients
- Long path to market & patient benefit

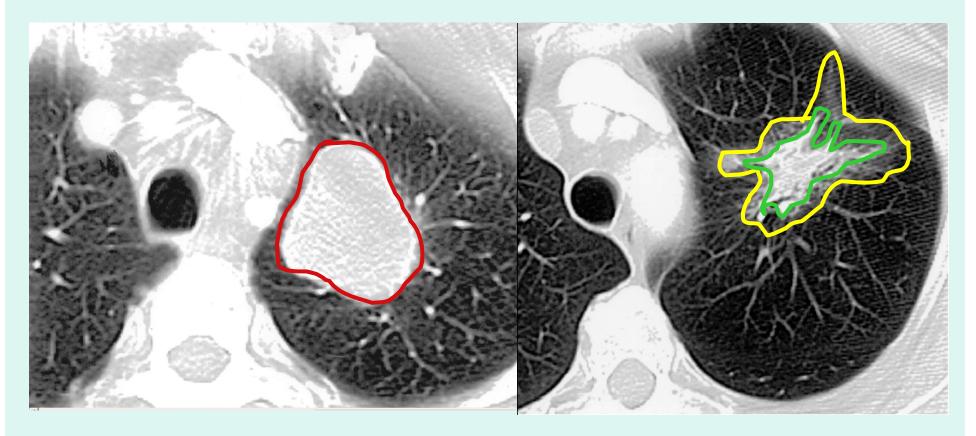
- Automated / semi-automated
- Efficient
- Less observer-dependent
- Reproducible
- Accurate classification
 Noninvasive
 - Improved objective measures
 - Early individual care decisions
- Early go/no-go decisions
- Trials less costly, fewer patients
- Shorter path to market

Baseline

24 weeks (PR confirmed - 52%)

52 weeks (- 74%)

metastatic renal cell carcinoma


Cost to conduct a study* Comparison Between SURVIVAL & TTP Studies

Therapy	Sample Size		Trial Cost*	
	Superiority	Non- inferiority	Superio rity	Non- inferiorit y
SURVIVAL STUDY CPT-11/5-FU/LV ⇒ Oxali/5-FU/LV	2200	5700	\$88M	\$228M
TTP STUDY CPT-11/5-FU/LV ⇒ Oxali/5-FU/LV	400	750	\$16M	\$30M

*This example from TP Therapeutics on colon CA, assumes a costs of \approx \$40,000/patient

Barrier to consistent data

Critical Path

- Make image data trustworthy. How?
- Validated analytic software tools for:
 - Lesion detection, classification
 - Accelerated diagnostic imaging decision throughput
 - Quantitative imaging assessment of drug response
- Missing ingredient: <u>Image Database Resources</u>

Statement of the Problem: Current Business Model

 Industry must individually acquire image databases for software applications such as screening, diagnosis, or image-guided intervention.

Model relies on partnerships with academic sites to access images from clinical trials; data accrual and content from these trials are often not suitable for software validation.

Image processing software and image archives for software validation are urgently needed for: Detection, Classification, Quantitative Monitoring, Rx response Accelerating and standardizing FDA drug approval

Communities to be served:

Academic medical and computer science researchers Device and Drug Industry <- a significant, under-served constituency FDA CDRH

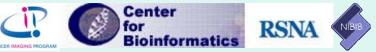
Leverage relationship with imaging professional organizations to address critical cancer needs
Foster Inter-institutional, inter-agency alliances NLM's ITK; FDA's IAG's; Navy's CTC; etc..
Develop consensus on structured, standardized exchange and use of information

CIP Goal:

Informatics to optimize value of cancer imaging data.

Major Objectives:

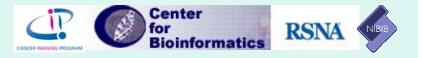
- Establish publicly available image archives, linked to outcome and other clinical data
- Stimulate development and dissemination of open-source image processing (e.g. CAD) software
- Partner with industry (FNIH) to support image archives Public Private Partnerships with the device and drug industry


NCI's Capabilities

- NCI sponsors a range of clinical trials that involve imaging methods for cancer screening, diagnosis and therapy response (ACRIN, Cancer Centers, SPOREs)
- NCI-funded investigators are developing databases for software validation that can be integrated into this initiative.
- NCI has established a bioinformatics support group that includes an image and data archive for new clinical trials, with secure webaccessible queries.

Proposed Business Model

- Develop industry partnerships with NCI, academia and the FDA; coordination by the FNIH.
- Pool resources from industrial partners that have a common interest in software validation for cancer applications.
- Form steering committee(s) with national or international representation of all parties and formulate plans for database collections of interest to both academia and industry, including timetables for access.


Proposed Business Model

- Develop a broad-based consensus for the underlying science involved in database development that may lead to more objective and standardized methods for software validation.
- Provide secure web-based access to the databases.
- NCI will coordinate the effort and integrate it with NCI's plans for an image archive and informatics infrastructure.

Business Model: Leveraging of Resources

- Clinical Data Collection: Costs covered by on going clinical investigations. Support is required for archiving of data sets and related image annotation required for software performance assessment.
- CaBIG: Web accessible methods to query this public resource are being developed as an integral part of the caBIG " *Imaging Workspace*"
- Public Private Partnerships: Engage cancer center, academic, and the device and drug industry communities to develop and support public databases. Includes FDA and NIST scientists with a goal of using this database as a resource to accelerate regulatory approval, standardized assessment of informatics tools by industry, and reimbursement by CMS.
- Developers: Engage the broader scientific community to develop more advanced software tools without concern about data collection/annotation.
- Physician End Users: Encourage this community RSNA (IHE) to require more standardized methods for software evaluation so that informatics tools will be widely accepted by the radiology community.

REFERENCE MAGE **D**ATABASE to **E**VALUATE **R**ESPONSE to Drug Therapy in Lung Cancer

RIDER Aims:

- Pilot database: 200 advanced lung CA patients; serial CT exams.
- A step toward NCI imaging informatics infrastructure
- Expert consensus on database design
- Enable industry & academia to develop, test, compare semiautomated, automated software tools for change analysis
- Dovetail RIDER with larger image database initiatives
- Aid partnering between FNIH, NCI/NIH, FDA, industry, academia to support future database resources (public-private partnerships)

REFERENCE MAGE **D**ATABASE to **E**VALUATE **R**ESPONSE

Issues being addressed in RIDER

- Harmonization of imaging protocols
- Firewalls
- Privacy (HIPAA, deidentification / anonymization)
- Access
- CaBIG Compatibility (linkage to CA research communities and data)
- Issues still to be addressed in RIDER
 - Database design consensus
 - Metadata to include
 - Quality review process
 - Curation
 - Pilot evaluation of software tools by researchers on RIDER data subsets

RIDER Infrastructure

REFERENCE MAGE DATABASE to EVALUATE RESPONSE to Drug Therapy in Lung Cancer

Investigators:

1) LIDC principal investigators (U01)

- U of Iowa McLennan
- U of Chicago Armato
- U of Michigan
- Cornell U
- UCLA McNitt-Gray

2) Cancer Center investigators (P30)

• MSKCC

Schwartz Munden

Meyer

Yankelevitz

- MDACC
- Steering Committee: 2 members per site, L. Clarke, Chair, Barbara Croft PD, other NCI staff, FDA CDRH, NIST IT.

NCI (CIP, NCICB); RSNA; Contractors (SAIC, TerpSys); NIBIB

CIP Near Term Goals Potential for near term success

Develop <u>validated</u>* data collections:

- Lung nodules (FNIH Demonstration Project)
 for Detection, Classification, rx. Response
- Liver mets rx response
- Colon polyps screening detection, classification
- Breast DMIST detection, classification

*validated = image-marked up overlay + pathology +/- lab data

- Enlist industry representatives and establish the steering committee.
- Engage NCI cooperative groups to enable data distribution responsive to this initiative.
- Initiate the first demonstration project.
- Expand NCI informatics and image archive infrastructure to meet the needs of this initiative.

Timeline (1-3 years)

- Complete a demonstration project:
 - Single modality database with > 1,000 subjects
 - Images linked to demographics, clinical data, and interpretations / reports
- Satisfy requirements of ACRIN, Cancer Centers, SPOREs etc.
 - Data access, security, confidentiality, investigator rights to enable project expansion.
- Distribute the database to industrial partners and assist in regulatory processes for new CAD product(s).