Radiation Therapy Clinical Trials
Digital Data Submission Overview

Wm. B. Harms, Sr.
Image-Guided Therapy Center
Value of Digital Data Collection for Advanced RT Trials

- CT (and other) image and contour data
 - Ensure protocol imaging requirements met
 - Ensure image segmentation consistent with protocol
- Beam geometry or permanent seed implant data
 - Ensure planned delivery consistent with protocol
 - Recalculation potential
- Volumetric dose data
 - Useful in toxicity and tumor control modeling
- DRR and port film data
 - Ensure delivery consistent with planning
Rationale for Current (RTOG) Interim Exchange

- Advanced RT trials required an exchange method
- Relatively simple to implement
- Advanced RT trials pre-date DICOM-RT extensions
 - Initiated the RT extensions to DICOM 3.0
Historical Review

- Originated with:
 - AAPM Report #10

- Used and/or modified by:
 - NCI Particle Beam CWG
 - NCI External Photon Beam CWG
 - NCI External Electron Beam CWG
 - Image-Guided Therapy Center
Patient Data and Transport

- Prior to ITC extensions:
 - comments (ASCII)
 - CT scans (binary)
 - contours (ASCII)
 - dose matrices (ASCII)

- Exchange media:
 - 9-track magnetic tape (1600 BPI)
Patient Data and Transport

- Added by ITC extensions:
 - MR and Ultrasound images
 - beam geometry & fractionation (ASCII)
 - Permanent seed implants
 - Binary dose
 - digital film (binary)
 - dose-volume histograms (ASCII)
- Media supported:
 - magnetic (9-track, 8mm, DAT, QIC)
 - network file exchange
Typical File Set

- A typical file set might consist of:
 - Directory file (only 1 per file set)
 - 90 CT scan data files
 - 7 Structure data files
 - 12 Beam Geometry data files
 - 24 Digital Film data files
 - 2 Dose file
 - 7 DVH files
Compliant Implementation Endorsement Requirements (RTOG or DICOM 3.0)

- RTP vendor works with ITC to test implementation
- Clinical site (not involved in exchange code development) demonstration of correct function
 - Special data sets or environments may result in vendor test working and user test not
- Worst case prior to setting these two rules
 - One year from time ITC indicated vendor system worked until it actually did!
Seven Demonstrated Commercial RTOG Implementations

- CT, contours, beams, doses, DVHs
 - ADAC Pinnacle3
 - Helax TMS
 - Marconi AcQPlan
 - Elektaq RenderPlan3D, Precise Plan
 - Nomos Corvus (less beams)
- CT, contours, beams, DRRs, doses, DVHs
 - MDS-Nordion Theraplan Plus
- CT, contours, beams, seeds, DRRs, doses, DVHs
 - CMS Focus
Developed Assistance

- The ITC provides assistance in evaluating the correct implementation of both RTOG data exchange and DICOM 3.0 file set creators. For assistance, send email to:

 itc@castor.wustl.edu
Complex MIR ROC UI Implementation

<table>
<thead>
<tr>
<th>Patients</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient ID: B960877</td>
<td>Structures:</td>
</tr>
<tr>
<td>Patient Name: A Patient</td>
<td>Available (click selects):</td>
</tr>
<tr>
<td>Study Set ID: set01</td>
<td>Selected (click deselects):</td>
</tr>
<tr>
<td>Disease Site: PROSTATE</td>
<td></td>
</tr>
<tr>
<td>Case #: 1024</td>
<td></td>
</tr>
<tr>
<td>Group #: Group 2, 9406</td>
<td></td>
</tr>
<tr>
<td>Dose Level: [9406] Level 2 (73.8 Gy)</td>
<td></td>
</tr>
<tr>
<td>Protocol: RTOG 94-06 Prostate 3D CRT Ph I/II</td>
<td></td>
</tr>
<tr>
<td>Writer: Paul Flanick</td>
<td></td>
</tr>
<tr>
<td>Physician: Carlos A. Perez, M.D.</td>
<td></td>
</tr>
<tr>
<td>Physician: Russell Gerber, M.S.</td>
<td></td>
</tr>
<tr>
<td>Dosimetrist: Stacey Ballard</td>
<td></td>
</tr>
<tr>
<td>Submission: Initial</td>
<td></td>
</tr>
</tbody>
</table>

Specify Plan Information:

<table>
<thead>
<tr>
<th># Tx</th>
<th>Beams</th>
<th>DRRs</th>
<th>Films</th>
<th>Doses</th>
<th>DVHs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan ID (click to select)</td>
<td>DVH Structures (#)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTVHOMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTVHOMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST7920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST7920B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST7920BMS17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST7920BMS814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESTFINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESTPTV1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Submission STATUS:

- Comments
- Scans
- Structs
- Plans
- Submit
- Quit

Submission (MAIL) Notes

This is a sample submission screen. Note the granularity of the data selected for submission to the RTOG 3D QA Center.
Problems With MIR ROC UI Implementation

- Allowed sub-selection of data
- Allowed multitudes of user errors
- Fell significantly short of the J.A. Purdy desire of “one-button” submissions
- Inappropriate for “legitimate” DICOM 3.0
Minimum Recommended UI Features

- Patient selection
 - May be implicit in system depending upon file set creation location within application

- Treatment plan selection
 - Implicit definition of image set and structure set
 - Implicit selection of all associated beams, DRR and other RT Images
 - Implicit selection of DVHs
ITC Web Site (http://itc.wustl.edu)

- Contains protocol specific forms, guides, etc.
- Identifies credentialed clinical facilities, their RTP systems and means of submission
- Contains identification of compliant systems
- Contains sample RTOG code (where possible) and other documents to assist developers
 - Pointers to other commercial and non-commercial sites with code available